支持向量机的核函数选择:影响性能的关键因素-程序员宅基地

技术标签: 支持向量机  算法  机器学习  人工智能  数据挖掘  

1.背景介绍

支持向量机(Support Vector Machines, SVM)是一种常用的机器学习算法,主要用于分类和回归问题。SVM 的核心思想是通过寻找最佳分割面(或超平面)来将数据集划分为不同的类别。在实际应用中,选择合适的核函数是非常重要的,因为它会直接影响 SVM 的性能。

本文将从以下几个方面进行阐述:

  1. 背景介绍
  2. 核心概念与联系
  3. 核心算法原理和具体操作步骤以及数学模型公式详细讲解
  4. 具体代码实例和详细解释说明
  5. 未来发展趋势与挑战
  6. 附录常见问题与解答

1.背景介绍

支持向量机(SVM)是一种基于最大盈利 margin 的线性分类方法,它的核心思想是通过寻找最佳分割面(或超平面)来将数据集划分为不同的类别。SVM 的核心技术在于它的核函数(kernel function),这些函数可以将线性不可分的问题转换为线性可分的问题。

在实际应用中,选择合适的核函数是非常重要的,因为它会直接影响 SVM 的性能。不同的核函数会导致不同的特征映射,从而导致不同的分类结果。因此,在使用 SVM 进行分类和回归时,需要根据具体问题选择合适的核函数。

在本文中,我们将从以下几个方面进行阐述:

  1. 核心概念与联系
  2. 核心算法原理和具体操作步骤以及数学模型公式详细讲解
  3. 具体代码实例和详细解释说明
  4. 未来发展趋势与挑战
  5. 附录常见问题与解答

2.核心概念与联系

2.1 核函数

核函数(kernel function)是 SVM 中最重要的概念之一,它用于将输入空间中的数据映射到高维的特征空间。核函数的主要特点是,它可以将线性不可分的问题转换为线性可分的问题。

常见的核函数有:线性核(linear kernel)、多项式核(polynomial kernel)、高斯核(Gaussian kernel)和 sigmoid 核(sigmoid kernel)等。每种核函数都有其特点和适用场景,需要根据具体问题选择合适的核函数。

2.2 支持向量

支持向量(support vector)是 SVM 中的一个重要概念,它是指在分类超平面两侧的数据点。支持向量用于定义分类超平面,并确保分类超平面能够将不同类别的数据点完全分开。

2.3 最大盈利 margin

最大盈利 margin(maximum margin)是 SVM 的核心思想之一,它是指在分类超平面两侧的最远距离。SVM 的目标是寻找能够将数据集划分为不同类别的分类超平面,同时使得这个超平面的最大盈利 margin 最大化。

3.核心算法原理和具体操作步骤以及数学模型公式详细讲解

3.1 线性核

线性核(linear kernel)是 SVM 中最简单的核函数,它将输入空间中的数据直接映射到高维的特征空间。线性核的数学模型公式如下:

$$ K(x, x') = x^T x' $$

线性核主要适用于线性可分的问题,当数据集在输入空间中已经是线性可分的时,可以使用线性核来进行分类。

3.2 多项式核

多项式核(polynomial kernel)是 SVM 中一种常见的核函数,它可以用于将线性不可分的问题转换为线性可分的问题。多项式核的数学模型公式如下:

$$ K(x, x') = (x^T x' + 1)^d $$

在上面的公式中,$d$ 是多项式核的度数,需要根据具体问题进行选择。多项式核主要适用于具有非线性关系的问题,当数据集在输入空间中是线性不可分的时,可以使用多项式核来进行分类。

3.3 高斯核

高斯核(Gaussian kernel)是 SVM 中另一种常见的核函数,它可以用于将线性不可分的问题转换为线性可分的问题。高斯核的数学模型公式如下:

$$ K(x, x') = exp(-gamma \|x - x'\|^2) $$

在上面的公式中,$gamma$ 是高斯核的参数,需要根据具体问题进行选择。高斯核主要适用于具有高斯分布特征的问题,当数据集在输入空间中是线性不可分的时,可以使用高斯核来进行分类。

3.4 sigmoid 核

sigmoid 核(sigmoid kernel)是 SVM 中另一种常见的核函数,它可以用于将线性不可分的问题转换为线性可分的问题。sigmoid 核的数学模型公式如下:

$$ K(x, x') = tanh(alpha x^T x' + c) $$

在上面的公式中,$alpha$ 和 $c$ 是 sigmoid 核的参数,需要根据具体问题进行选择。sigmoid 核主要适用于具有 sigmoid 分布特征的问题,当数据集在输入空间中是线性不可分的时,可以使用 sigmoid 核来进行分类。

4.具体代码实例和详细解释说明

在这里,我们将通过一个简单的例子来演示如何使用 Python 的 scikit-learn 库来实现 SVM 的核函数选择。

4.1 导入库和数据

首先,我们需要导入相关的库和数据。在这个例子中,我们将使用 scikit-learn 库来实现 SVM。

python import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.metrics import accuracy_score

4.2 数据预处理

接下来,我们需要对数据进行预处理。这包括数据分割、标准化等操作。

```python

加载数据

iris = datasets.load_iris() X = iris.data y = iris.target

数据分割

Xtrain, Xtest, ytrain, ytest = traintestsplit(X, y, testsize=0.2, randomstate=42)

数据标准化

scaler = StandardScaler() Xtrain = scaler.fittransform(Xtrain) Xtest = scaler.transform(X_test) ```

4.3 核函数选择和模型训练

在这个例子中,我们将使用线性核、多项式核、高斯核和 sigmoid 核来进行比较。我们将分别使用这些核函数来训练 SVM 模型,并比较它们的性能。

```python

线性核

linearkernel = lambda x, xprime: np.dot(x, xprime.T) linearsvm = SVC(kernel=linearkernel, C=1.0) linearsvm.fit(Xtrain, ytrain) linearypred = linearsvm.predict(Xtest) linearaccuracy = accuracyscore(ytest, lineary_pred)

多项式核

polynomialkernel = lambda x, xprime: np.dot(x, xprime.T) ** 2 polynomialsvm = SVC(kernel=polynomialkernel, C=1.0, degree=2) polynomialsvm.fit(Xtrain, ytrain) polynomialypred = polynomialsvm.predict(Xtest) polynomialaccuracy = accuracyscore(ytest, polynomialy_pred)

高斯核

gaussiankernel = lambda x, xprime: np.exp(-gamma * np.linalg.norm(x - xprime) ** 2) gaussiansvm = SVC(kernel=gaussiankernel, C=1.0, gamma=0.1) gaussiansvm.fit(Xtrain, ytrain) gaussianypred = gaussiansvm.predict(Xtest) gaussianaccuracy = accuracyscore(ytest, gaussiany_pred)

sigmoid 核

sigmoidkernel = lambda x, xprime: np.tanh(alpha * np.dot(x, xprime.T) + c) sigmoidsvm = SVC(kernel=sigmoidkernel, C=1.0, gamma=0.1) sigmoidsvm.fit(Xtrain, ytrain) sigmoidypred = sigmoidsvm.predict(Xtest) sigmoidaccuracy = accuracyscore(ytest, sigmoidy_pred) ```

4.4 结果分析

在这个例子中,我们将比较不同核函数在 SVM 模型中的性能。我们将根据准确率来评估不同核函数的效果。

python print("线性核准确率:", linear_accuracy) print("多项式核准确率:", polynomial_accuracy) print("高斯核准确率:", gaussian_accuracy) print("sigmoid 核准确率:", sigmoid_accuracy)

通过这个例子,我们可以看到不同核函数在 SVM 模型中的性能差异。在这个例子中,高斯核和 sigmoid 核的性能较好,而线性核和多项式核的性能较差。这是因为 iris 数据集在输入空间中是线性可分的,因此线性核和多项式核的性能较差。

5.未来发展趋势与挑战

随着数据规模的增加,支持向量机的计算效率成为了一个重要的问题。因此,未来的研究趋势将会倾向于提高 SVM 的计算效率,以满足大数据应用的需求。此外,随着深度学习技术的发展,SVM 在某些场景下可能会被深度学习技术所取代。

6.附录常见问题与解答

6.1 如何选择合适的 gamma 参数?

在选择 gamma 参数时,可以使用交叉验证(cross-validation)来评估不同 gamma 参数下模型的性能。通过比较不同 gamma 参数下模型的性能,可以选择最佳的 gamma 参数。

6.2 如何选择合适的 C 参数?

在选择 C 参数时,可以使用交叉验证(cross-validation)来评估不同 C 参数下模型的性能。通过比较不同 C 参数下模型的性能,可以选择最佳的 C 参数。

6.3 SVM 和逻辑回归的区别?

SVM 和逻辑回归都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而逻辑回归通过在输入空间中找到最佳的分隔超平面来进行分类。SVM 通常在高维空间中进行分类,而逻辑回归在输入空间中进行分类。

6.4 SVM 和随机森林的区别?

SVM 和随机森林都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而随机森林通过构建多个决策树来进行分类。SVM 在高维空间中进行分类,而随机森林在输入空间中进行分类。

6.5 SVM 和梯度下降的区别?

SVM 和梯度下降都是用于优化问题的算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而梯度下降通过在输入空间中找到最佳的分隔超平面来进行分类。SVM 通常在高维空间中进行分类,而梯度下降在输入空间中进行分类。

6.6 SVM 和 KNN 的区别?

SVM 和 KNN 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 KNN 通过在输入空间中找到最近的邻居来进行分类。SVM 通常在高维空间中进行分类,而 KNN 在输入空间中进行分类。

6.7 SVM 和 LDA 的区别?

SVM 和 LDA 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 LDA 通过在输入空间中找到最佳的线性分类器来进行分类。SVM 通常在高维空间中进行分类,而 LDA 在输入空间中进行分类。

6.8 SVM 和 QDA 的区别?

SVM 和 QDA 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 QDA 通过在输入空间中找到每个类别的高斯分布来进行分类。SVM 通常在高维空间中进行分类,而 QDA 在输入空间中进行分类。

6.9 SVM 和 Naive Bayes 的区别?

SVM 和 Naive Bayes 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Naive Bayes 通过在输入空间中找到最佳的条件概率来进行分类。SVM 通常在高维空间中进行分类,而 Naive Bayes 在输入空间中进行分类。

6.10 SVM 和 DBSCAN 的区别?

SVM 和 DBSCAN 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 DBSCAN 通过在输入空间中找到簇来进行分类。SVM 通常在高维空间中进行分类,而 DBSCAN 在输入空间中进行分类。

6.11 SVM 和 KMeans 的区别?

SVM 和 KMeans 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 KMeans 通过在输入空间中找到簇来进行分类。SVM 通常在高维空间中进行分类,而 KMeans 在输入空间中进行分类。

6.12 SVM 和 AdaBoost 的区别?

SVM 和 AdaBoost 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 AdaBoost 通过构建多个弱分类器来进行分类。SVM 通常在高维空间中进行分类,而 AdaBoost 在输入空间中进行分类。

6.13 SVM 和 Random Forest 的区别?

SVM 和 Random Forest 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Random Forest 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Random Forest 在输入空间中进行分类。

6.14 SVM 和 XGBoost 的区别?

SVM 和 XGBoost 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 XGBoost 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 XGBoost 在输入空间中进行分类。

6.15 SVM 和 LightGBM 的区别?

SVM 和 LightGBM 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 LightGBM 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 LightGBM 在输入空间中进行分类。

6.16 SVM 和 CatBoost 的区别?

SVM 和 CatBoost 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 CatBoost 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 CatBoost 在输入空间中进行分类。

6.17 SVM 和 H2O 的区别?

SVM 和 H2O 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 H2O 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 H2O 在输入空间中进行分类。

6.18 SVM 和 Spark ML 的区别?

SVM 和 Spark ML 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Spark ML 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Spark ML 在输入空间中进行分类。

6.19 SVM 和 Scikit-learn 的区别?

SVM 和 Scikit-learn 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Scikit-learn 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Scikit-learn 在输入空间中进行分类。

6.20 SVM 和 TensorFlow 的区别?

SVM 和 TensorFlow 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 TensorFlow 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 TensorFlow 在输入空间中进行分类。

6.21 SVM 和 PyTorch 的区别?

SVM 和 PyTorch 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 PyTorch 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 PyTorch 在输入空间中进行分类。

6.22 SVM 和 Keras 的区别?

SVM 和 Keras 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Keras 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Keras 在输入空间中进行分类。

6.23 SVM 和 Theano 的区别?

SVM 和 Theano 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Theano 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Theano 在输入空间中进行分类。

6.24 SVM 和 Caffe 的区别?

SVM 和 Caffe 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Caffe 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Caffe 在输入空间中进行分类。

6.25 SVM 和 MXNet 的区别?

SVM 和 MXNet 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 MXNet 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 MXNet 在输入空间中进行分类。

6.26 SVM 和 PaddlePaddle 的区别?

SVM 和 PaddlePaddle 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 PaddlePaddle 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 PaddlePaddle 在输入空间中进行分类。

6.27 SVM 和 ONNX 的区别?

SVM 和 ONNX 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 ONNX 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 ONNX 在输入空间中进行分类。

6.28 SVM 和 LightGBM 的区别?

SVM 和 LightGBM 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 LightGBM 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 LightGBM 在输入空间中进行分类。

6.29 SVM 和 CatBoost 的区别?

SVM 和 CatBoost 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 CatBoost 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 CatBoost 在输入空间中进行分类。

6.30 SVM 和 H2O 的区别?

SVM 和 H2O 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 H2O 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 H2O 在输入空间中进行分类。

6.31 SVM 和 Spark ML 的区别?

SVM 和 Spark ML 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Spark ML 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Spark ML 在输入空间中进行分类。

6.32 SVM 和 Scikit-learn 的区别?

SVM 和 Scikit-learn 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Scikit-learn 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Scikit-learn 在输入空间中进行分类。

6.33 SVM 和 TensorFlow 的区别?

SVM 和 TensorFlow 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 TensorFlow 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 TensorFlow 在输入空间中进行分类。

6.34 SVM 和 PyTorch 的区别?

SVM 和 PyTorch 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 PyTorch 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 PyTorch 在输入空间中进行分类。

6.35 SVM 和 Keras 的区别?

SVM 和 Keras 都是用于二分类问题的机器学习算法,但它们

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/universsky2015/article/details/137304086

智能推荐

leetcode 172. 阶乘后的零-程序员宅基地

文章浏览阅读63次。题目给定一个整数 n,返回 n! 结果尾数中零的数量。解题思路每个0都是由2 * 5得来的,相当于要求n!分解成质因子后2 * 5的数目,由于n中2的数目肯定是要大于5的数目,所以我们只需要求出n!中5的数目。C++代码class Solution {public: int trailingZeroes(int n) { ...

Day15-【Java SE进阶】IO流(一):File、IO流概述、File文件对象的创建、字节输入输出流FileInputStream FileoutputStream、释放资源。_outputstream释放-程序员宅基地

文章浏览阅读992次,点赞27次,收藏15次。UTF-8是Unicode字符集的一种编码方案,采取可变长编码方案,共分四个长度区:1个字节,2个字节,3个字节,4个字节。文件字节输入流:每次读取多个字节到字节数组中去,返回读取的字节数量,读取完毕会返回-1。注意1:字符编码时使用的字符集,和解码时使用的字符集必须一致,否则会出现乱码。定义一个与文件一样大的字节数组,一次性读取完文件的全部字节。UTF-8字符集:汉字占3个字节,英文、数字占1个字节。GBK字符集:汉字占2个字节,英文、数字占1个字节。GBK规定:汉字的第一个字节的第一位必须是1。_outputstream释放

jeecgboot重新登录_jeecg 登录自动退出-程序员宅基地

文章浏览阅读1.8k次,点赞3次,收藏3次。解决jeecgboot每次登录进去都会弹出请重新登录问题,在utils文件下找到request.js文件注释这段代码即可_jeecg 登录自动退出

数据中心供配电系统负荷计算实例分析-程序员宅基地

文章浏览阅读3.4k次。我国目前普遍采用需要系数法和二项式系数法确定用电设备的负荷,其中需要系数法是国际上普遍采用的确定计算负荷的方法,最为简便;而二项式系数法在确定设备台数较少且各台设备容量差..._数据中心用电负荷统计变压器

HTML5期末大作业:网页制作代码 网站设计——人电影网站(5页) HTML+CSS+JavaScript 学生DW网页设计作业成品 dreamweaver作业静态HTML网页设计模板_网页设计成品百度网盘-程序员宅基地

文章浏览阅读7k次,点赞4次,收藏46次。HTML5期末大作业:网页制作代码 网站设计——人电影网站(5页) HTML+CSS+JavaScript 学生DW网页设计作业成品 dreamweaver作业静态HTML网页设计模板常见网页设计作业题材有 个人、 美食、 公司、 学校、 旅游、 电商、 宠物、 电器、 茶叶、 家居、 酒店、 舞蹈、 动漫、 明星、 服装、 体育、 化妆品、 物流、 环保、 书籍、 婚纱、 军事、 游戏、 节日、 戒烟、 电影、 摄影、 文化、 家乡、 鲜花、 礼品、 汽车、 其他 等网页设计题目, A+水平作业_网页设计成品百度网盘

【Jailhouse 文章】Look Mum, no VM Exits_jailhouse sr-iov-程序员宅基地

文章浏览阅读392次。jailhouse 文章翻译,Look Mum, no VM Exits!_jailhouse sr-iov

随便推点

chatgpt赋能python:Python怎么删除文件中的某一行_python 删除文件特定几行-程序员宅基地

文章浏览阅读751次。本文由chatgpt生成,文章没有在chatgpt生成的基础上进行任何的修改。以上只是chatgpt能力的冰山一角。作为通用的Aigc大模型,只是展现它原本的实力。对于颠覆工作方式的ChatGPT,应该选择拥抱而不是抗拒,未来属于“会用”AI的人。AI职场汇报智能办公文案写作效率提升教程 专注于AI+职场+办公方向。下图是课程的整体大纲下图是AI职场汇报智能办公文案写作效率提升教程中用到的ai工具。_python 删除文件特定几行

Java过滤特殊字符的正则表达式_java正则表达式过滤特殊字符-程序员宅基地

文章浏览阅读2.1k次。【代码】Java过滤特殊字符的正则表达式。_java正则表达式过滤特殊字符

CSS中设置背景的7个属性及简写background注意点_background设置背景图片-程序员宅基地

文章浏览阅读5.7k次,点赞4次,收藏17次。css中背景的设置至关重要,也是一个难点,因为属性众多,对应的属性值也比较多,这里详细的列举了背景相关的7个属性及对应的属性值,并附上演示代码,后期要用的话,可以随时查看,那我们坐稳开车了······1: background-color 设置背景颜色2:background-image来设置背景图片- 语法:background-image:url(相对路径);-可以同时为一个元素指定背景颜色和背景图片,这样背景颜色将会作为背景图片的底色,一般情况下设置背景..._background设置背景图片

Win10 安装系统跳过创建用户,直接启用 Administrator_windows10msoobe进程-程序员宅基地

文章浏览阅读2.6k次,点赞2次,收藏8次。Win10 安装系统跳过创建用户,直接启用 Administrator_windows10msoobe进程

PyCharm2021安装教程-程序员宅基地

文章浏览阅读10w+次,点赞653次,收藏3k次。Windows安装pycharm教程新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入下载安装PyCharm1、进入官网PyCharm的下载地址:http://www.jetbrains.com/pycharm/downl_pycharm2021

《跨境电商——速卖通搜索排名规则解析与SEO技术》一一1.1 初识速卖通的搜索引擎...-程序员宅基地

文章浏览阅读835次。本节书摘来自异步社区出版社《跨境电商——速卖通搜索排名规则解析与SEO技术》一书中的第1章,第1.1节,作者: 冯晓宁,更多章节内容可以访问云栖社区“异步社区”公众号查看。1.1 初识速卖通的搜索引擎1.1.1 初识速卖通搜索作为速卖通卖家都应该知道,速卖通经常被视为“国际版的淘宝”。那么请想一下,普通消费者在淘宝网上购买商品的时候,他的行为应该..._跨境电商 速卖通搜索排名规则解析与seo技术 pdf

推荐文章

热门文章

相关标签