Scala Actor并发编程模型_scala简单的并发编程模型-程序员宅基地

技术标签: scala  Scala  

Scala Actor并发编程模型


1. Actor介绍

Scala中的Actor并发编程模型可以用来开发比Java线程效率更高的并发程序。我们学习Scala Actor的目的主要是为后续学习Akka做准备。

1.1 Java并发编程的问题

在Java并发编程中,每个对象都有一个逻辑监视器(monitor),可以用来控制对象的多线程访问。我们添加sychronized关键字来标记,需要进行同步加锁访问。这样,通过加锁的机制来确保同一时间只有一个线程访问共享数据。但这种方式存在资源争夺、以及死锁问题,程序越大问题越麻烦。

线程死锁

在这里插入图片描述

1.2 Actor并发编程模型

Actor并发编程模型,是Scala提供给程序员的一种与Java并发编程完全不一样的并发编程模型,是一种基于事件模型的并发机制。Actor并发编程模型是一种不共享数据,依赖消息传递的一种并发编程模式,有效避免资源争夺、死锁等情况。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UINgnIsn-1595649814995)(pictures/1552787528554.png)]

1.3 Java并发编程对比Actor并发编程
Java内置线程模型 Scala Actor模型
"共享数据-锁"模型 (share data and lock) share nothing
每个object有一个monitor,监视线程对共享数据的访问 不共享数据,Actor之间通过Message通讯
加锁代码使用synchronized标识
死锁问题
每个线程内部是顺序执行的 每个Actor内部是顺序执行的

注意:

  1. scala在2.11.x版本中加入了Akka并发编程框架,老版本已经废弃。

  2. Actor的编程模型和Akka很像,我们这里学习Actor的目的是为学习Akka做准备。

2. 创建Actor

我们可以通过类(class)或者单例对象(object), 继承Actor特质的方式, 来创建Actor对象.

2.1 步骤
  1. 定义class或object继承Actor特质
  2. 重写act方法
  3. 调用Actor的start方法执行Actor

注意: 每个Actor是并行执行的, 互不干扰.

2.2 案例一: 通过class实现

需求

  1. 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20
  2. 使用class继承Actor实现.(如果需要在程序中创建多个相同的Actor)

参考代码

import scala.actors.Actor

//案例:Actor并发编程入门, 通过class创建Actor
object ClassDemo01 {

  //需求: 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20
  //1. 创建Actor1, 用来打印1~10的数字.
  class Actor1 extends Actor {
    override def act(): Unit = for (i <- 1 to 10) println("actor1: " + i)
  }

  //2. 创建Actor2, 用来打印11~20的数字.
  class Actor2 extends Actor {
    override def act(): Unit = for (i <- 11 to 20) println("actor2: " + i)
  }

  def main(args: Array[String]): Unit = {
    //3. 启动两个Actor.
    new Actor1().start()
    new Actor2().start()
  }
}
2.3 案例二: 通过object实现

需求

  1. 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20
  2. 使用object继承Actor实现.(如果在程序中只创建一个Actor)

参考代码

import scala.actors.Actor

//案例:Actor并发编程入门, 通过object创建Actor
object ClassDemo02 {
  //需求: 创建两个Actor,一个Actor打印1-10,另一个Actor打印11-20

  //1. 创建Actor1, 用来打印1~10的数字.
  object Actor1 extends Actor {
    override def act(): Unit = for (i <- 1 to 10) println("actor1: " + i)
  }

  //2. 创建Actor2, 用来打印11~20的数字.
  object Actor2 extends Actor {
    override def act(): Unit = for (i <- 11 to 20) println("actor2: " + i)
  }

  def main(args: Array[String]): Unit = {
    //3. 启动两个Actor.
   Actor1.start()
   Actor2.start()
  }
}
2.4 Actor程序运行流程
  1. 调用start()方法启动Actor
  2. 自动执行act()方法
  3. 向Actor发送消息
  4. act方法执行完成后,程序会调用**exit()**方法结束程序执行.

3. 发送消息/接收消息

我们之前介绍Actor的时候,说过Actor是基于事件(消息)的并发编程模型,那么Actor是如何发送消息和接收消息的呢?

3.1 使用方式
3.1.1 发送消息

我们可以使用三种方式来发送消息:

发送异步消息,没有返回值
!? 发送同步消息,等待返回值
!! 发送异步消息,返回值是Future[Any]

例如:要给actor1发送一个异步字符串消息,使用以下代码:

actor1 ! "你好!"
3.1.2 接收消息

Actor中使用receive方法来接收消息,需要给receive方法传入一个偏函数

{
    case 变量名1:消息类型1 => 业务处理1
    case 变量名2:消息类型2 => 业务处理2
    ...
}

注意: receive方法只接收一次消息,接收完后继续执行act方法

3.2 案例一: 发送及接收一句话

需求

  1. 创建两个Actor(ActorSender、ActorReceiver)
  2. ActorSender发送一个异步字符串消息给ActorReceiver
  3. ActorReceiver接收到该消息后,打印出来

参考代码

//案例: 采用 异步无返回的形式, 发送消息.
object ClassDemo03 {
  //1. 创建发送消息的Actor, ActorSender, 发送一句话给ActorReceiver
  object ActorSender extends Actor {
    override def act(): Unit = {
      //发送一句话给ActorReceiver
      ActorReceiver ! "你好啊, 我是ActorSender!"

      //发送第二句话
      ActorReceiver ! "你叫什么名字呀? "
    }
  }

  //2. 创建接收消息的Actor, ActorReceiver
  object ActorReceiver extends Actor {
    override def act(): Unit = {
      //接收发送过来的消息.
      receive {
        case x: String => println(x)
      }
    }
  }

  def main(args: Array[String]): Unit = {
    //3. 启动两个Actor
    ActorSender.start()
    ActorReceiver.start()
  }
}
3.3 案例二: 持续发送和接收消息

如果我们想实现ActorSender一直发送消息, ActorReceiver能够一直接收消息,该怎么实现呢?

答: 我们只需要使用一个while(true)循环,不停地调用receive来接收消息就可以啦。

需求

  1. 创建两个Actor(ActorSender、ActorReceiver)
  2. ActorSender持续发送一个异步字符串消息给ActorReceiver
  3. ActorReceiver持续接收消息,并打印出来

参考代码

//案例:Actor 持续发送和接收消息.
object ClassDemo04 {
  //1. 创建发送消息的Actor, ActorSender, 发送一句话给ActorReceiver
  object ActorSender extends Actor {
    override def act(): Unit = {
        while(true) {
          //发送一句话给ActorReceiver
          ActorReceiver ! "你好啊, 我是ActorSender!"
          //休眠3秒.
          TimeUnit.SECONDS.sleep(3)       //单位是: 秒
        }
    }
  }

  //2. 创建接收消息的Actor, ActorReceiver
  object ActorReceiver extends Actor {
    override def act(): Unit = {
      //接收发送过来的消息,  持续接收.
      while(true) {
        receive {
          case x: String => println(x)
        }
      }
    }
  }

  def main(args: Array[String]): Unit = {
    //3. 启动两个Actor
    ActorSender.start()
    ActorReceiver.start()
  }
}
3.4 案例三: 优化持续接收消息

上述代码,是用while循环来不断接收消息的, 这样做可能会遇到如下问题:

  • 如果当前Actor没有接收到消息,线程就会处于阻塞状态
  • 如果有很多的Actor,就有可能会导致很多线程都是处于阻塞状态
  • 每次有新的消息来时,重新创建线程来处理
  • 频繁的线程创建、销毁和切换,会影响运行效率

针对上述情况, 我们可以使用loop(), 结合react()来复用线程, 这种方式比while循环 + receive()更高效.

需求

  1. 创建两个Actor(ActorSender、ActorReceiver)
  2. ActorSender持续发送一个异步字符串消息给ActorReceiver
  3. ActorReceiver持续接收消息,并打印出来

注意: 使用loop + react重写上述案例.

参考代码

//案例: 使用loop + react循环接收消息.
object ClassDemo05 {

  //1. 创建发送消息的Actor, ActorSender, 发送一句话给ActorReceiver
  object ActorSender extends Actor {
    override def act(): Unit = {
      while(true) {
        //发送一句话给ActorReceiver
        ActorReceiver ! "你好啊, 我是ActorSender!"
        //休眠3秒.
        TimeUnit.SECONDS.sleep(3)       //单位是: 秒
      }
    }
  }

  //2. 创建接收消息的Actor, ActorReceiver
  object ActorReceiver extends Actor {
    override def act(): Unit = {
      //接收发送过来的消息,  持续接收.
      loop{
        react {
          case x: String => println(x)
        }
      }
    }
  }

  def main(args: Array[String]): Unit = {
    //3. 启动两个Actor
    ActorSender.start()
    ActorReceiver.start()
  }
}
3.5 案例四: 发送和接收自定义消息

我们前面发送的消息都是字符串类型,Actor中也支持发送自定义消息,例如:使用样例类封装消息,然后进行发送处理。

3.5.1 示例一: 发送同步有返回消息

需求

  1. 创建一个MsgActor,并向它发送一个同步消息,该消息包含两个字段(id、message)
  2. MsgActor回复一个消息,该消息包含两个字段(message、name)
  3. 打印回复消息

注意:

  • 使用!?来发送同步消息
  • 在Actor的act方法中,可以使用sender获取发送者的Actor引用

参考代码

//案例: Actor发送和接收自定义消息, 采用 同步有返回的形式
object ClassDemo06 {

  //1. 定义两个样例类Message(表示发送数据),   ReplyMessage(表示返回数据.)
  case class Message(id: Int, message: String) //自定义的发送消息 样例类
  case class ReplyMessage(message: String, name: String) //自定义的接收消息 样例类


  //2. 创建一个MsgActor,用来接收MainActor发送过来的消息, 并向它回复一条消息.
  object MsgActor extends Actor {
    override def act(): Unit = {
      //2.1 接收 主Actor(MainActor) 发送过来的消息.
      loop {
        react {
          //结合偏函数使用
          case Message(id, message) => println(s"我是MsgActor, 我收到的消息是: ${id}, ${message}")

          //2.2 给MainActor回复一条消息.
          //sender: 获取消息发送方的Actor对象
          sender ! ReplyMessage("我很不好, 熏死了!...", "车磊")
        }
      }
    }
  }

  def main(args: Array[String]): Unit = {
    //3. 开启MsgActor
    MsgActor.start()

    //4. 通过MainActor, 给MsgActor发送一个 Message对象.
    //采用 !?  同步有返回.
    val reply:Any = MsgActor !? Message(1, "你好啊, 我是MainActor, 我在给你发消息!")
    //resutl表示最终接收到的 返回消息.
    val result = reply.asInstanceOf[ReplyMessage]
    //5. 输出结果.
    println(result)
  }
}
3.5.2 示例二: 发送异步无返回消息

需求

创建一个MsgActor,并向它发送一个异步无返回消息,该消息包含两个字段(id, message)

注意: 使用!发送异步无返回消息

参考代码

//案例: Actor发送和接收自定义消息, 采用 异步 无返回的形式
object ClassDemo07 {

  //1. 定义一个样例类Message(表示发送数据)
  case class Message(id: Int, message: String) //自定义的发送消息 样例类

  //2. 创建一个MsgActor,用来接收MainActor发送过来的消息, 并打印.
  object MsgActor extends Actor {
    override def act(): Unit = {
      //2.1 接收 主Actor(MainActor) 发送过来的消息.
      loop {
        react {
          //结合偏函数使用
          case Message(id, message) => println(s"我是MsgActor, 我收到的消息是: ${id}, ${message}")
        }
      }
    }
  }

  def main(args: Array[String]): Unit = {
    //3. 开启MsgActor
    MsgActor.start()

    //4. 通过MainActor, 给MsgActor发送一个 Message对象.
    //采用 !  异步无返回
   MsgActor ! Message(1, "我是采用 异步无返回 的形式发送消息!")

  }
}
3.5.3 示例三: 发送异步有返回消息

需求

  1. 创建一个MsgActor,并向它发送一个异步有返回消息,该消息包含两个字段(id、message)
  2. MsgActor回复一个消息,该消息包含两个字段(message、name)
  3. 打印回复消息

注意:

  • 使用!!发送异步有返回消息
  • 发送后,返回类型为Future[Any]的对象
  • Future表示异步返回数据的封装,虽获取到Future的返回值,但不一定有值,可能在将来某一时刻才会返回消息
  • Future的isSet()可检查是否已经收到返回消息,apply()方法可获取返回数据

参考代码

//案例: Actor发送和接收自定义消息, 采用 异步有返回的形式
object ClassDemo08 {

  //1. 定义两个样例类Message(表示发送数据),   ReplyMessage(表示返回数据.)
  case class Message(id: Int, message: String) //自定义的发送消息 样例类
  case class ReplyMessage(message: String, name: String) //自定义的接收消息 样例类


  //2. 创建一个MsgActor,用来接收MainActor发送过来的消息, 并向它回复一条消息.
  object MsgActor extends Actor {
    override def act(): Unit = {
      //2.1 接收 主Actor(MainActor) 发送过来的消息.
      loop {
        react {
          //结合偏函数使用
          case Message(id, message) => println(s"我是MsgActor, 我收到的消息是: ${id}, ${message}")

            //2.2 给MainActor回复一条消息.
            //sender: 获取消息发送方的Actor对象
            sender ! ReplyMessage("我很不好, 熏死了!...", "糖糖")
        }
      }
    }
  }

  def main(args: Array[String]): Unit = {
    //3. 开启MsgActor
    MsgActor.start()

    //4. 通过MainActor, 给MsgActor发送一个 Message对象.
    //采用 !!  异步有返回.
    val future: Future[Any] = MsgActor !! Message(1, "你好啊, 我是MainActor, 我在给你发消息!")

    //5. 因为future中不一定会立马有数据, 所以我们要校验.
    //Future的isSet()可检查是否已经收到返回消息,apply()方法可获取返回数据
    //!future.isSet表示: 没有接收到具体的返回消息, 就一直死循环.
    while(!future.isSet){}

    //通过Future的apply()方法来获取返回的数据.
    val result = future.apply().asInstanceOf[ReplyMessage]
    //5. 输出结果.
    println(result)
  }
}

4. 案例: WordCount

4.1 需求

接下来,我们要使用Actor并发编程模型实现多文件的单词统计

案例介绍

给定几个文本文件(文本文件都是以空格分隔的),使用Actor并发编程来统计单词的数量.

思路分析

实现思路

  1. MainActor获取要进行单词统计的文件
  2. 根据文件数量创建对应的WordCountActor
  3. 将文件名封装为消息发送给WordCountActor
  4. WordCountActor接收消息,并统计单个文件的单词计数
  5. 将单词计数结果发送给MainActor
  6. MainActor等待所有的WordCountActor都已经成功返回消息,然后进行结果合并
4.2 步骤一: 获取文件列表

实现思路

  1. 在当前项目下的data文件夹下有: 1.txt, 2.txt两个文本文件, 具体存储内容如下:

    1.txt文本文件存储内容如下:

    hadoop sqoop hadoop
    hadoop hadoop flume
    hadoop hadoop hadoop
    spark
    

    2.txt文本文件存储内容如下:

    flink hadoop hive
    hadoop sqoop hadoop
    hadoop hadoop hadoop
    spark
    
  2. 获取上述两个文本文件的路径, 并将结果打印到控制台上.

参考代码

object MainActor {

  def main(args: Array[String]): Unit = {
    //1. 获取所有要统计的文件的路径.
    //1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/
    var dir = "./data/"
    //1.2 获取该文件夹下, 所有的文件名.
    var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")
    //1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txt
    var fileDirList = fileNameList.map(dir + _)
    //println(fileDirList)
  }
}
4.3 步骤二: 创建WordCountActor

实现思路

  1. 根据文件数量创建对应个数的WordCountActor对象.
  2. 为了方便后续发送消息给Actor,将每个Actor与文件名关联在一起

实现步骤

  1. 创建WordCountActor
  2. 将文件列表转换为WordCountActor
  3. 为了后续方便发送消息给Actor,将Actor列表和文件列表拉链到一起
  4. 打印测试

参考代码

  • WordCountActor.scala文件中的代码

    //2.1 先创建WordCountActor类, 用来获取WordCountActor对象.
    //创建WordCountActor类, 每一个WordCountActor对象, 统计一个文件.
    class WordCountActor extends Actor {
      override def act(): Unit = { 
      }
    }
    
    
  • MainActor.scala文件中的代码

    object MainActor {
    
      def main(args: Array[String]): Unit = {
        //1. 获取所有要统计的文件的路径.
        //1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/
        var dir = "./data/"
        //1.2 获取该文件夹下, 所有的文件名.
        var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")
        //1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txt
        var fileDirList = fileNameList.map(dir + _)
        //println(fileDirList)
    
        //2. 根据文件数量, 创建对应的WordCountActor对象.
        //2.1 先创建WordCountActor类, 用来获取WordCountActor对象.
        //2.2 根据文件数量, 创建对应的WordCountActor对象.
        val wordCountList = fileNameList.map(_ => new WordCountActor) //根据两个txt文件, 创建了两个wordCount对象.
        //println(wordCountList)
        //2.3 将WordCountActor和文件全路径关联起来
        val actorWithFile = wordCountList.zip(fileDirList) //WordCountActor -> ./data/1.txt ,  WordCountActor -> ./data/2.txt
        println(actorWithFile)
      }
    }
    
4.4 步骤三: 启动Actor/发送/接收任务消息

实现思路

启动所有WordCountActor对象,并发送单词统计任务消息给每个WordCountActor对象.

注意: 此处应发送异步有返回消息

实现步骤

  1. 创建一个WordCountTask样例类消息,封装要进行单词计数的文件名
  2. 启动所有WordCountActor,并发送异步有返回消息
  3. 获取到所有的WordCountActor中返回的消息(封装到一个Future列表中)
  4. 在WordCountActor中接收并打印消息

参考代码

  • MessagePackage.scala文件中的代码

    /**
      * 表示: MainActor 给每一个WordCountActor发送任务的 格式.
      * @param fileName 具体的要统计的 文件路径.
      */
    case class WordCountTask(fileName:String)
    
  • MainActor.scala文件中的代码

    object MainActor {
    
      def main(args: Array[String]): Unit = {
        //1. 获取所有要统计的文件的路径.
        //1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/
        var dir = "./data/"
        //1.2 获取该文件夹下, 所有的文件名.
        var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")
        //1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txt
        var fileDirList = fileNameList.map(dir + _)
        //println(fileDirList)
    
        //2. 根据文件数量, 创建对应的WordCountActor对象.
        //2.1 先创建WordCountActor类, 用来获取WordCountActor对象.
        //2.2 根据文件数量, 创建对应的WordCountActor对象.
        val wordCountList = fileNameList.map(_ => new WordCountActor) //根据两个txt文件, 创建了两个wordCount对象.
        //println(wordCountList)
        //2.3 将WordCountActor和文件全路径关联起来
        val actorWithFile = wordCountList.zip(fileDirList) //WordCountActor -> ./data/1.txt ,  WordCountActor -> ./data/2.txt
        println(actorWithFile)
    
        //3. 启动WordCountActor, 并给每一个WordCountActor发送任务.
        /*
          Map(spark -> 1, hadoop -> 7, sqoop -> 1, flume -> 1)
          Map(sqoop -> 1, flink -> 1, hadoop -> 6, spark -> 1, hive -> 1)
         */
        val futureList: List[Future[Any]] = actorWithFile.map {       //futureList: 记录的是所有WordCountActor统计的结果.
          keyVal => //keyVal的格式: WordCountActor -> ./data/1.txt
            //3.1 获取具体的要启动的WordCountActor对象.
            val actor = keyVal._1 //actor: WordCountActor
            //3.2 启动具体的WordCountActor.
            actor.start()
            
            //3.3 给每个WordCountActor发送具体的任务(文件路径)  异步有返回.
            val future: Future[Any] = actor !! WordCountTask(keyVal._2)
            future      //记录的是某一个WordCountActor返回的统计结果.
        }
      }
    }
    
  • WordCountActor.scala文件中的代码

    //2.1 先创建WordCountActor类, 用来获取WordCountActor对象.
    //创建WordCountActor类, 每一个WordCountActor对象, 统计一个文件.
    class WordCountActor extends Actor {
      override def act(): Unit = { 
          loop {
              react {
                //3.4 接收具体的任务
                case WordCountTask(fileName) =>
                  //3.5 打印具体的任务
                  println(s"接收到的具体任务是: ${fileName}")
              }
          }
      }
    }
    
4.5 步骤四: 统计文件单词计数

实现思路

读取文件文本,并统计出来单词的数量。例如:

(hadoop, 3), (spark, 1)...

实现步骤

  1. 读取文件内容,并转换为列表
  2. 按照空格切割文本,并转换为一个一个的单词
  3. 为了方便进行计数,将单词转换为元组
  4. 按照单词进行分组,然后再进行聚合统计
  5. 打印聚合统计结果

参考代码

  • WordCountActor.scala文件中的代码

    class WordCountActor extends Actor {
      override def act(): Unit = {
        //采用loop + react 方式接收数据.
        loop {
          react {
            //3.4 接收具体的任务
            case WordCountTask(fileName) =>
              //3.5 打印具体的任务
              println(s"接收到的具体任务是: ${fileName}")
    
            //4. 统计接收到的文件中的每个单词的数量.
            //4.1 获取指定文件中的所有的文件. List("hadoop sqoop hadoop","hadoop hadoop flume")
            val lineList = Source.fromFile(fileName).getLines().toList
            //4.2 将上述获取到的数据, 转换成一个一个的字符串.  
            //List("hadoop", "sqoop", "hadoop","hadoop", "hadoop", "flume")
            val strList = lineList.flatMap(_.split(" "))
            //4.3 给每一个字符串后边都加上次数, 默认为1.             
            //List("hadoop"->1, "sqoop"->1, "hadoop"->1, "hadoop"->1, "flume"->1)
            val wordAndCount = strList.map(_ -> 1)
            //4.4 按照 字符串内容分组.                              
            //"hadoop" -> List("hadoop"->1, "hadoop"->1),   "sqoop" -> List("sqoop"->1)
            val groupMap = wordAndCount.groupBy(_._1)
            //4.5 对分组后的内容进行统计, 统计每个单词的总次数.    "hadoop" -> 2,   "sqoop" -> 1
            val wordCountMap = groupMap.map(keyVal => keyVal._1 -> keyVal._2.map(_._2).sum)
            //4.6 打印统计后的结果. 
            println(wordCountMap)
          }
        }
      }
    }
    
4.6 步骤五: 返回结果给MainActor

实现思路

  • 将单词计数的结果封装为一个样例类消息,并发送给MainActor
  • MainActor等待所有WordCountActor均已返回后,获取到每个WordCountActor单词计算后的结果

实现步骤

  1. 定义一个样例类封装单词计数结果
  2. 将单词计数结果发送给MainActor
  3. MainActor中检测所有WordCountActor是否均已返回,如果均已返回,则获取并转换结果
  4. 打印结果

参考代码

  • MessagePackage.scala文件中的代码

    /**
      * 表示: MainActor 给每一个WordCountActor发送任务的 格式.
      * @param fileName 具体的要统计的 文件路径.
      */
    case class WordCountTask(fileName:String)
    
    
    /**
      * 每个WordCountActor统计完的返回结果的: 格式
      * @param wordCountMap  具体的返回结果, 例如:  Map("hadoop"->6, "sqoop"->1)
      */
    case class WordCountResult(wordCountMap:Map[String, Int])
    
  • WordCountActor.scala文件中的代码

    class WordCountActor extends Actor {
      override def act(): Unit = {
        //采用loop + react 方式接收数据.
        loop {
          react {
            //3.4 接收具体的任务
            case WordCountTask(fileName) =>
              //3.5 打印具体的任务
              println(s"接收到的具体任务是: ${fileName}")
    
            //4. 统计接收到的文件中的每个单词的数量.
            //4.1 获取指定文件中的所有的文件.                       List("hadoop sqoop hadoop","hadoop hadoop flume")
            val lineList = Source.fromFile(fileName).getLines().toList
            //4.2 将上述获取到的数据, 转换成一个一个的字符串.        List("hadoop", "sqoop", "hadoop","hadoop", "hadoop", "flume")
            val strList = lineList.flatMap(_.split(" "))
            //4.3 给每一个字符串后边都加上次数, 默认为1.             List("hadoop"->1, "sqoop"->1, "hadoop"->1,"hadoop"->1, "hadoop"->1, "flume"->1)
            val wordAndCount = strList.map(_ -> 1)
            //4.4 按照 字符串内容分组.                              "hadoop" -> List("hadoop"->1, "hadoop"->1),   "sqoop" -> List("sqoop"->1)
            val groupMap = wordAndCount.groupBy(_._1)
            //4.5 对分组后的内容进行统计, 统计每个单词的总次数.      "hadoop" -> 2,   "sqoop" -> 1
            val wordCountMap = groupMap.map(keyVal => keyVal._1 -> keyVal._2.map(_._2).sum)
            //4.6 把统计后的结果返回给: MainActor.
            sender ! WordCountResult(wordCountMap)
          }
        }
      }
    }
    
4.7 步骤六: 结果合并

实现思路

对接收到的所有单词计数进行合并。

参考代码

  • MainActor.scala文件中的代码

    object MainActor {
    
      def main(args: Array[String]): Unit = {
        //1. 获取所有要统计的文件的路径.
        //1.1 定义变量dir, 记录保存所有文件的: 文件夹路径.  ./data/
        var dir = "./data/"
        //1.2 获取该文件夹下, 所有的文件名.
        var fileNameList = new File(dir).list().toList //List("1.txt", "2.txt")
        //1.3 对获取到的文件名进行封装, 获取其全路径.     ./data/1.txt      ./data/2.txt
        var fileDirList = fileNameList.map(dir + _)
        //println(fileDirList)
    
        //2. 根据文件数量, 创建对应的WordCountActor对象.
        //2.1 先创建WordCountActor类, 用来获取WordCountActor对象.
        //2.2 根据文件数量, 创建对应的WordCountActor对象.
        val wordCountList = fileNameList.map(_ => new WordCountActor) //根据两个txt文件, 创建了两个wordCount对象.
        //println(wordCountList)
        //2.3 将WordCountActor和文件全路径关联起来
        val actorWithFile = wordCountList.zip(fileDirList) //WordCountActor -> ./data/1.txt ,  WordCountActor -> ./data/2.txt
        println(actorWithFile)
    
        //3. 启动WordCountActor, 并给每一个WordCountActor发送任务.
        /*
          Map(spark -> 1, hadoop -> 7, sqoop -> 1, flume -> 1)
          Map(sqoop -> 1, flink -> 1, hadoop -> 6, spark -> 1, hive -> 1)
         */
        val futureList: List[Future[Any]] = actorWithFile.map {       //futureList: 记录的是所有WordCountActor统计的结果.
          keyVal => //keyVal的格式: WordCountActor -> ./data/1.txt
            //3.1 获取具体的要启动的WordCountActor对象.
            val actor = keyVal._1 //actor: WordCountActor
            //3.2 启动具体的WordCountActor.
            actor.start()
    
            //3.3 给每个WordCountActor发送具体的任务(文件路径)  异步有返回.
            val future: Future[Any] = actor !! WordCountTask(keyVal._2)
            future      //记录的是某一个WordCountActor返回的统计结果.
        }
    
        //5. MainActor对接收到的数据进行合并.
        //5.1 判断所有的future都有返回值后, 再往下执行.
        //       过滤没有返回值的future         不为0说明还有future没有收到值
        while(futureList.filter(!_.isSet).size != 0) {} //futureList:  future1, future2
        //5.2 从每一个future中获取数据.
        //wordCountMap:  List(Map(spark -> 1, hadoop -> 7, sqoop -> 1, flume -> 1), Map(sqoop -> 1, flink -> 1, hadoop -> 6, spark -> 1, hive -> 1))
        val wordCountMap = futureList.map(_.apply().asInstanceOf[WordCountResult].wordCountMap)
        //5.3 对获取的数据进行flatten, groupBy, map, 然后统计.
        val result = wordCountMap.flatten.groupBy(_._1).map(keyVal => keyVal._1 -> keyVal._2.map(_._2).sum)
        //5.4 打印结果
        println(result)
      }
    }
    

start()

      //3.3 给每个WordCountActor发送具体的任务(文件路径)  异步有返回.
      val future: Future[Any] = actor !! WordCountTask(keyVal._2)
      future      //记录的是某一个WordCountActor返回的统计结果.
  }

  //5. MainActor对接收到的数据进行合并.
  //5.1 判断所有的future都有返回值后, 再往下执行.
  //       过滤没有返回值的future         不为0说明还有future没有收到值
  while(futureList.filter(!_.isSet).size != 0) {} //futureList:  future1, future2
  //5.2 从每一个future中获取数据.
  //wordCountMap:  List(Map(spark -> 1, hadoop -> 7, sqoop -> 1, flume -> 1), Map(sqoop -> 1, flink -> 1, hadoop -> 6, spark -> 1, hive -> 1))
  val wordCountMap = futureList.map(_.apply().asInstanceOf[WordCountResult].wordCountMap)
  //5.3 对获取的数据进行flatten, groupBy, map, 然后统计.
  val result = wordCountMap.flatten.groupBy(_._1).map(keyVal => keyVal._1 -> keyVal._2.map(_._2).sum)
  //5.4 打印结果
  println(result)
}

}


版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_36382679/article/details/107576720

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线